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Abstract. A systematic approximation scheme is presented for introducing multi-classical 
trajectories into the theory of inelastic collisions. In general, the translational and internal 
degrees of freedom are coupled through an interaction picture potential which is non-local 
in translational space and which has no diagonal elements in the internal space. For each 
different pair of internal states this potential has a unique classical trajectory generated 
by the Hamiltonian which is the arithmetic mean of the two appropriate (internal state) 
diagonal elements of the full system Hamiltonian. Localisation of this potential in transla- 
tional position space produces a multi-trajectory eikonal theory. Finally, replacing the 
unique classical trajectories with fully parametrised trajectories gives a multi-trajectory 
version of the standard impact parameter approximation. Results for both atomic and 
molecular (adiabatic and diabatic) bases are presented. 

1. Introduction 

The use of classical trajectories in inelastic scattering theory has received much 
attention over the years. In one standard approach, the impact parameter approxima- 
tion (Mott and Massey 1965, Child 1974, Levine 1969, Bransden 1970, Bates and 
McCarroll 1958,1962, Wilets and Gallaher 1966, Delos et a1 1972, Delos and Thorson 
1972), attention is focused on the changes of internal state that occur when the relative 
motion of the two colliding heavy particles is confined to a single, classical trajectory. 
This trajectory may be a rectilinear, constant-velocity path or a curved path associated 
with some reference potential. In either case the relative motion of the centres of 
mass is treated as if changes of internal state did not occur. The shortcomings of this 
approximation include its reliance on a single trajectory and the lack of dependence 
of that trajectory on the internal states of the system. In cases where only two internal 
states are involved (Marchi and Smith 1965, Olson and Smith 1971) a way of dealing 
with the latter of these deficiencies is to use the classical trajectory generated by a 
Hamiltonian which includes the arithmetic mean of the initial and final state diagonal 
elements of the coupling interaction between the internal and translational degrees 
of freedom. The forced-common-turning-point method of Bates and Crothers (1970) 
provides a related but distinct way of dealing with this two-state problem. Finally, a 
many-state theory has been suggested by McCann and Flannery (1975) who propose 
the use of a single trajectory based on a potential function that is determined along 
with the internal-state wavefunction in a self-consistent manner. 

@ 1983 The Institute of Physics 975 



976 R E Turner and J S Dahler 

The alternative considered here is a theory which assigns a different, classical 
trajectory to each pair of internal states. According to this theory the amplitudes 
c ( t )  = (c1, c2,  . . . , c N )  of the internal states are governed by a set of equations 

c ( t )  = bc (1.1) 

involving a matrix b = {blk ; j # k}, each element of which is associated with a trajectory 
that depends on the average of two diagonal elements of the coupling interaction 
between the internal and translational degrees of freedom. Thus, the solutions of 
these N coupled equations are dependent on $ N ( N  - 1) two-state interactions and 
the corresponding set of &(N - 1) classical trajectories. The present paper provides 
a formal development of this multi-trajectory (MT) theory, including a systematic 
procedure for introducing the classical trajectories and a prescription for computing 
the coupling matrix b. It is reasonable to expect that the numerical predictions of 
this theory will be more realistic than those based on theories using single-trajectory 
approximations to the heavy-particle motion. 

The approach which will be used to construct the multi-trajectory theory parallels 
Turner and Dahler’s (1980) systematic development of the standard, single-trajectory 
impact parameter approximation. The first step is to cast the theory in terms of the 
interaction picture and quantal Liouville superoperators which are descriptive of the 
heavy-particle motions. Classical trajectories are then introduced by replacing the 
phase-space representatives of these quantal superoperators with their classical limits 
(analogues). This leads to an interaction picture potential operator which is non-local 
in the space of the translational degrees of freedom. Localisation of this potential 
operator results in a multi-trajectory eikonal approximation. Replacement of the 
eikonal trajectories with fully parametrised classical trajectories then generates a MT 

impact parameter approximation to the scattering problem. Although the general 
structure of the theory is independent of which representation has been chosen for 
the internal degrees of freedom, many details are not. Therefore, 8 2 is devoted to 
the MT approximation using an atomic basis. The result obtained is a generalisation 
of Marchi and Smith’s (1965) theory for a two-state system. The MT formalism specific 
to the molecular (adiabatic or diabatic) basis is then presented in 8 3.  

2. Atomic basis, multi-trajectory theory 

The system to be considered consists of two composite particles. The corresponding 
Hamiltonian, H, can be decomposed into three parts, Ho, H,,, and V. The first of 
these is itself the sum of two terms: K, the relative kinetic energy of the centres of 
mass of the two composite particles and VO, a potential which operates only on the 
distance separating these two centres. Associated with the isolated particles is an 
internal state Hamiltonian, Hint, which is assumed to admit N discrete eigenstates 
with kets In) and energies E,, (notation: (H,,, -E,,)ln) = 0). Ho and Hi,, are associated 
with different degrees of freedom and so commute with one another. Coupling between 
the internal and translational motions is provided by the potential V. 

Associated with the total Hamiltonian is the Schrodinger picture state vector l q ( t ) ) ,  
governed by the equation 
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and subject to the precollisional, initial (t’+ --a) condition 

W r ’ ) )  = l * t r ( t ’ ) ) B l q i n t ( t ’ ) )  (2.2) 

which here is taken to be the product of a translational factor lqtr(t’)) and the internal 
state lVint(t’)) = 11). It is assumed that the initial translational state is an incoming 
free wavepacket with average impact parameter B” and average momentum P“ 
(P” * B” = 0). 

In  the atomic basis the Schrodinger picture state vector becomes the sum 

of wavefunctions, $,(R,  t )  = (R, n l q ( t ) ) ,  which satisfy the differential equations 

2.1. Classical trajectory approximation (CTA) 

The procedure which will be used to introduce classical trajectories requires that the 
theory be recast in an interaction picture specific to the internal state basis which has 
been selected and that the heavy-particle dynamics then be expressed in terms of 
the phase-space representatives of the corresponding quantal (Liouville) super- 
operators. The first step in this procedure is to rewrite the total Hamiltonian as 

H =Ho+Hlnt+ v 

with H,, =Ho+ V,,,. The interaction picture (I) state vector, specific to the atomic 
basis, is then defined by 

The evolution of this vector is governed by the equation 

d 
i-lqdt)) = bOp(t)Wdt)) (2.7) dt 

which contains the (self-adjoint) interaction picture potential operator 

n + m  
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Here, U,, = K1(E,, -E,) and 

Vnm(t)=exp[(i/Zz)Hn(t -t')]Vnm exp[-(i/ii)H,(t --t')] (2.9) 

is a translational interaction picture potential operator whose time development is 
generated by the two different Hamiltonian operators, H, and H,. The atomic basis 
wavefunctions associated with the interaction picture state vector l q I ( f ) )  are defined by 

and satisfy wave equations 
N 

ihdC;(R, t )  = j' ~ R ' ( R /  v , , ~ ( ~ ) I R ' )  exp[(i/fi)o,,(t -~')IG!,,(R', t )  (2.11) 
at m f n  

containing the non-local interactions (R 1 V,,(t)lR'). 
The next step in the development is to express the time dependence of the 

translational potential operators V,,(t) in terms of superoperators. This can be done 
by examining the differential equations 

d Vnm ( t 1 / d t = (i / h )  (H ,  Vn m ( t 1 - Vam ( I ) H m  ) 

= ( 2 n m  +fi-'Qnm)vnm(l) (2.12) 

satisfied by these potentials. Here, Lf,, is the Liouville superoperator 

2", = K'[$ (H,  +Hm),  I -= K1[H",,  1- (2.13) 

associated with the two-state average Hamiltonian, H,,, = Ho+$(V,, + V,,), and a,,, 
is the anticommutator 

Qnm = [ $ ( ~ n - ~ m ) ,  I t = i [ ~ n m ,  I+ (2.14) 

connected with the difference of potential operators, U,, = V,,, - V,,. 
The solution of equation (2.12) is given by the formula 

V,,(t) =exp[i2,,(t --r ' )]%(r,  t')Vnm 

where 

(2.15) 

%( t ,  t ' )  = T exp( [: ds a,, (s 1) (2.16) 

(with T denoting the Dyson chronological operator) is a member of the time-ordered 
group of operators generated by 

(2.17) 

The time dependence of V,,(t), given by equation (2.15), is determined by the 
translational superoperator Ynm and by the potential difference superoperator Q,,. 
The classical motion (CM) approximation is obtained when these two superoperators 
are replaced with their classical limits ( h  + 0). These limits are easily computed using 
the phase-space representation (Weyl 1927, Wigner 1932). Thus, 2,, is replaced 
with the classical Poisson bracket associated with the average Hamiltonian H,, and, 

Q,, ( t )  = exp[ - Z,,, ( t  - t ' ) ] Q n m  exp[iZ,,(t - t ' ) ] .  
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from (see appendix for notation) 

&?, Pl%,,IR'P'))y = h-3 Tr A(R, P)%,,A(R', P') 
= 2 s  (R -R') COS($hVR ' VP)$%", (R)S (P - P') 
- S(R -R')s(P-P')%",(R) 

= o w ,  Pl%:rIR', P'))Y (2.18) 

it can be seen that the CM approximation to the phase-space representative of a,,, 
is simply multiplication by the potential difference ann(R) = Vn,(R) - V,,(R). Con- 
sequently, the phase-space function associated with V,, (t), but with a time dependence 
generated by classical instead of quantum mechanics, is given by 

vnm(R,Plt)mA=( R 3 P I exp[iz:r ( t  - t ' ) ] ~  

h+O 

x exp(1 ds exp[ - i e r  (s - t')]%:? e x p [ i e r  (s - t ' ) ] )  I Vnm) 
U 

= exp(i  I,: ds % n m [ R n m ( s I R ,  PI]) v n m [ R n m ( r I R ,  (2.19) 

The factor R,,(sIR,P) appearing in the last of these expressions is the solution of 
Hamilton's equations based on the average Hamiltonian H,,, for which the initial 
(t = t'+ -a) values of position and momentum are equal to R and P, respectively. 

The classical-trajectory quantal operator associated with the exact translational 
potential, Vn,(t) of equation (2.9), is given by the formula 

1 
Vnm(t)CTA = h-3 dR dq dP exp( -$P * q)/R -&) 

x e x p ( i  I,lds % n m [ R n m ( s I R ,  PI]) v n m [ R n m ( t I R ,  P)I@ +kI. (2.20) 

This has been obtained by using Vn,(R, Plt)mA, defined according to equation (2.19), 
in the Weyl correspondence (Weyll927) for the interaction picture potential operator. 
With Vn,(t)mA in place of Vnm(t), the operator b o p ( f )  of equation (2.8) becomes 

x brim (R, ~ l t ) ( ~  + k, m I 
where b,,(R, Plt) denotes the function 

(2.21) 

and 

~ , , ( R , P ~ t ) = ~ , , ( t - r ' ) + h - ~  ds%,,,[R,,(slR,P)]. (2.23) 

bop(f)CTA, the interaction picture potential operator of the classical multi-trajectory 
theory, is non-local in the space of translational degrees of freedom and is off -diagonal 
in the space of internal states. Connected to each pair of internal states, n and m, is 

I, 
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a unique classical trajectory, generated by the average Hamiltonian, Hnm. The operator 
bop(t)CTA determines the evolution of the state vector lqI ( r )cTA)  according to the 
equation 

(2.24) 

Consequently, the atomic basis wavefunctions, rL!, (R,  t)CTA = (R, n IqI(tfTA), associ- 
ated with this CTA state vector satisfy the wave equations 

N iv a 
i - $L(R, [ICTA = 1 

at 

x bnm[t(R +I?’), P’~r]lL!,,(R’lt)CTA. (2.25) 

These equations and their molecular-basis counterparts (cf equation (3.26) of the 
following section) are the most general of the classical multi-trajectory equations 
which will be derived in this paper. They are the formally exact consequences of 
inserting the classical limit of the heavy-particle dynamics into the operators which 
determine the collisional alterations of the internal state. The coupling elements b,, 
which appear in the wave equations (2.25) are completely determined by the classical 
heavy-particle trajectories R,, (tlR, P ) .  

2.2. Eikonal approximation (EAI 

The complexity of the wave equations (2.25) is due principally to the non-locality of 
the CTA interaction representation potential operator bop(t)CTA and of the associated 
potential functions bnm(R,  Pit). The result of removing this non-locality is a multi- 
trajectory generalisation of the eikonal theory which has previously been reported by 
Turner (1980). The interaction picture potentials are localised by replacing the classical 
trajectories R,,(tlR, P )  with trajectories R,,(tlR, P”),  to each of which has been 
assigned a common value, P“ = avg P, of the initial relative momentum. This approxi- 
mation produces an eikonal state vector I\IrI(t)EA) whose equation of motion 

d 
dt i - / q I ( t ) E A )  = b,,(tlP”IEA1qI(t)EA) (2.26) 

involves the eikonal potential operator 

(2.27) 

This operator is local in translational space and depends parametrically on the average 
momentum PI’. The wavefunctions associated with lVI(t)EA) satisfy the wave equations 

(2.28) 

2.3. Decoupled motions (DO or impact parameter approximation 

In the multi-trajectory eikonal approximation the relative translational motion of the 
two colliding composite particles remains coupled to the internal degrees of freedom. 
However, when the position variable R is replaced with a single fixed parameter, B”, 



A multi-trajectory theory of inelastic collisions 98 1 

this coupling is eliminated and the interaction picture potential reduces to the operator 

(2.29) 

each element of which depends parametrically on the average initial relative inomen- 
tum, P", and on the impact parameter, B", associated with the initial wave packet. 

The interaction picture state vector of this DC approximation satisfies the equation 
of motion 

(2.30) 

and the corresponding wavefunctions, Cn(t) = ( n  191(r)Dc), satisfy the coupled 
equations 

which are identical in form to those of the standard impact parameter approximation. 
Here, however, each element of the coupling matrix b is determined by a different 
classical trajectory. The Schrodinger picture state vector of this approximate theory 
(cf equation (2.2) for comparison) is given by the sum 

l ~ t ) " " )  = C {exp[-(i/h)Hn ( t  - tf)II*tr(tf))I o {In 
N 

lexp[-(i/h)H,,,(r - ~ ' I I I * I ( ~ ) ~ ~ ) I  
n = l  

(2.32) 

of wavefunctions 

cl/,,(R, t )DC = Cn(t) exp[-(i/h)E,(t - t')] [ dR'(R1 exp[-(i/h)H,,(t -t')]lR')4tr(R') 

(2.33) 

with &(R)=(R19tr(t')). Each of these is the product of a translational function with 
quantal motion generated by the single-channel Hamiltonian operator H,, = Ho + V,,, 
and an internal state amplitude, C,(t), with motion determined by the entire set of 
&(N - 1) classical trajectories. Thus, the translational motion associated with a 
particular internal state is unaffected by changes of internal state that occur during a 
collision. (Indeed, if V had no off-diagonal internal state matrix elements, then 
l*(t)Dc) given by (2.32) would be exact.) On the other hand, the internal degrees of 
freedom respond to the translational motion as if each pair of internal states were 
experiencing a collision whose translational trajectory is generated by an average 
Hamiltonian specific to that pair. This multi-trajectory impact parameter theory is a 
generalisation of Marchi and Smith's (1965) two-state theory. 

3. Molecular basis, multi-trajectory theory 

The objective here is to construct the counterpart for a molecular adiabatic or diabatic 
basis (Tully 1976, O'Malley 1971) of the atomic-basis, multi-trajectory theory 
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developed in the preceding section. To accomplish this the total Hamiltonian of a 
two-atom system is written as the sum 

H =KN + H e  (3.1) 

of the relative (translational) kinetic energy of the atomic nuclei (reduced mass p ~ )  
and the internal state, electronic Hamiltonian 

(3.2) 

Here, K, is the electronic kinetic energy, V,, the sum of all electron-electron interac- 
tions, VeN the electronic-nuclear interactions and VNN the internuclear, coulombic 
potential energy. 

He = K ,  + v,, + V,N + VNN. 

The unit operator for this system can be written as 
N 

lop= 1NOIe= (J dRlR)(RI)@( n = l  C I4n(Rop))(4n(Rop)I) 

(3.3) 

where {d, , (R);  n = 1, 2, , . . , N }  denotes a complete orthonormal set for the electronic 
degrees of freedom, specific to the internuclear separation R. For large values of IRI 
this set becomes equal to the atomic basis {In); n = 1,2, . . . , N } .  In the ‘molecular 
representation’ the Hamiltonian takes the form 

(3.4) 

Here Hnm,op is the operator (on the nuclear, translational degrees of freedom) 

H n m , o p  = (4n(Rop)/Hl4m(Rop)) 

= J d~ J ~R’IRW, 4n(R)IHIR’, 4m(R’))(R’I 

= SnmKop + Vnm,op + V!%op + WF:,op (3.5) 
with Kop = ( 2 1 ~ ~ )  P o ,  and where Pop is the translational momentum operator. The 
Born-Oppenheimer coupling terms VBo and WBo are given by the formulae 

(3.6) 

-1 2 

-1 B O  vF2,op = P N  Pnm.op . p o p  

with 

(3.7) 
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Here r denotes the composite of all electronic coordinates and 4,, (rlR) = (r14,, ( R ) )  is 
the coordinate representative of the molecular state (R)) .  Finally, the electronic 
potential operator is defined by 

(3.9) 
Vnm(R) = J’ dr4:(rlR)He(r, R)dm(rIR)- 

The Schrodinger picture state vector descriptive of a collision between the two 
atoms satisfies the equation (cf (2.1)) 

(3.10) d 
dt 

ih  - JWt)) = H l W t ) )  

and is subject to the initial (t’+ -CO) condition (cf (2.2)) 

IW)) = IWt’))OIVe(t’)). (3.11) 

and it follows from (3.10) that the Schrodinger wavefunctions xn(R, t )  = 
(R, &(R) \q( t ) )  satisfy the familiar set of coupled differential equations 

(3.13) 
appropriate to the adiabatic/diabatic molecular representation. 

3.1. Classical trajectory approximation 

Here, as in the previous theory based on the atomic representation (§ 2,1), the first 
step toward introducing classical trajectories is a decomposition of the total Hamil- 
tonian into the sum (H =HI + H 2 )  of diagonal and off-diagonal parts 
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respectively. Following standard practice, all diagonal Born-Oppenheimer couplings 
will be neglected as well as the off-diagonal elements of Wf1:,,,. Consequently, the 
symbols Hnn,op and Hnm,op are henceforth to be identified with the two operators 

H n n , o p  = Kop + Vnn,op and H n m , o p  = VZ,op + Vnm,op ( n  # m). (3.15) 

If the molecular basis is adiabatic, Vnm,op vanishes identically and Vy:,op is the only 
source of coupling among the electronic states. However, when the basis is diabatic, 
the couplings Vnm,op will generally be of far greater importance than the relatively 
negligible BO operators, Vf:,op. 

The interaction picture state vector 

I*&)) = exp[(i/h)Hl(t - r ’ ) l l ~ ( t ) )  
N 

1 I4n(Rop)) exp[(i/h)Hnn,o,U - r’)l(4n(~op)~)~*(t)) (3.16) 

satisfies equation (2.7) but with bop( t )  given by 

(3.17) 

and satisfy the wave equations 

(3.20) 

Were it not for the BO couplings which have been discarded, these equations would 
be exact and equivalent to equation (3.13). 

Classical trajectories can be introduced using the procedure described in § 2.1. In 
particular, the phase-space function associated with the operator Vn,,op(t), but with 
classical instead of quantal translational dynamics, is (cf equation (2.19)) 

V n m ( R ,  plt)CTA=exP(i Ir, ds a n m [ R n m ( s I R ,  pi]) v n m [ R n m ( t l R ,  P)I. 
. r  

(3.21) 

The objects anm and Rnm(fIR,P) occurring here are defined as before, but with 
subscripts referring to molecular instead of atomic basis states. The average Hamil- 
tonian associated with the two states n and m is K N  +f( V,, + Vmm). 
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The phase-space representation of the Born-Oppenheimer operator V::,op is 

v:," (R, P )  = Y((R, PI V%OP ))F 
- - 1  BO 

-1  B O  

- CLN P n m  (R) * P + (ih/211dV~ * P!?: (RI 
(3.22) 

The term proportional to the gradient of pfl,o(R) has been discarded because it is of 
the same order as W!?: (R, P ) .  The phase-space function associated with VffmqOp ( t ) ,  
but with classical instead of quantal translational motion, is given by the formula 

CLN P n m  (RI * P.  

VK? (R, = CI. N1 exp( ds q n m [ R n m ( s  IR, PI])  

xp::,ORnm(tIR, P)I * Pnnt(tIR, (3.23) 

where P,,,(tlR, P )  denotes the momentum part of the classical trajectory generated 
by the average Hamiltonian KN + f( V,, + Vmln). 

The quantal operator corresponding to the phase-space function 

H n m ( R ,  Plt)CTA= c'"~(R,  v::((R, 
is 

Hnm,op(f)CTA = K 3  I dR dq dP exp[-(i/h)P * q] /R -;q) 

x H n m ( R ,  PIt fTA(R + & I .  (3.24) 

The classical trajectory approximation to the interaction picture state vector satisfies 
equation (2.24) with 6op(t)CTA given by 

N N  

bop(tICTA = h-' 1 K 3  1 dR dq dPlR - fq, 4n(R -fq)) exp[-(i/h)P 41 
n f m  

xHnm(R, pItlCTA(R +fq, 4 m ( R  +k)I (3.25) 

and the corresponding interaction picture wavefunctions are solutions of the wave 
equations 

a 
ih at G!,(R, t)CTA = f h-3  I dR'  dP '  exp[-(i/h)P' (R -RI)] 

m f n  

xHflm[3(R +R'), P'It]CTAG"(R', t)CTA. (3.26) 

These are the molecular-basis counterparts of the atomic-basis wave equations (2.25). 

3.2. Eikonal approximation 

The multi-trajectory eikonal approximation is obtained by assigning to each classical 
trajectory the same initial value of momentum and identifying this common value 
with the average momentum, P", of the incident wavepacket. Thus, R,,,(tlR, P )  and 
Pflm(tlR, P )  are replaced by R,,,(tlR, P") and Pflm(tlR, P"), respectively. The resulting 
eikonal approximation to the interaction picture state vector satisfies equation (2.26) 
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with bop(rlP”)EA given by the operator 

which is local in translational configuration space. The wavefunctions of this approxi- 
mate theory satisfy the equations 

N a 
ih-$!,(R, t ) E A  = 1 Hnm(R, P”lt)CTA$m(R, t IEA.  

at m # n  
(3.28) 

3.3. Decoupled motions approximation 

Finally, the molecular state representation of the multi-trajectory impact parameter 
theory is obtained by replacing the initial state variable R in Hnm(R, Pf‘It)CTA with 
the impact parameter B” of the incident wavepacket. This approximation decouples 
the translational and internal state dynamics. Its effect is to replace the Schrodinger 
wavefunction xn  (R, r )  of equation (3.12) by the decoupled motions approximation 

with &(R) =(R1qN(t’)) .  The electronic state amplitudes {An( t ) }  are solutions of the 
coupled impact parameter equations 

N 
Ak(t’)=SkI (3.30) d 

i -A. ( t )  = K’H,,,(B”, P”\t)*AAm(t) 
d t  m f n  

specific to the molecular basis. The structure and interpretation of these equations 
are completely analogous to those of their atomic-basis counterparts, equation (2.3 1). 

4. Summary 

A systematic approximation scheme has been presented by which a multiplicity of 
classical, heavy-particle trajectories can be introduced into the quantum theory of 
inelastic collisions. This scheme used the part of the total Hamiltonian which was 
diagonal in the internal-state representation to define an interaction picture. The 
Weyl correspondence was then invoked as a means of inserting classical heavy-particle 
dynamics into the interaction picture potential. Three levels of treatment were 
considered, namely (i) a non-local classical trajectory approximation, (ii) a localised, 
eikonal theory and (iii) a decoupled motions or impact parameter approximation. 
Both the second and third of these involved a definite but non-unique momentum 
parameter, P”.  The impact parameter theory involved a position parameter, B”,  as 
well. The proper choices for these parameters depend upon the specifics of the collision 
problem being considered. However, the most obvious thing to do was to identify 
P” and B” with the average momentum and impact parameter of the incident, freely 
moving wavepacket. 



A multi-trajectory theory of inelastic collisions 98 7 

The theory has been developed using both atomic and molecular (adiabatic or 
diabatic) representations of the internal states. 
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Appendix. Phase-space representation 

The Weyl correspondence or Wigner equivalence representation has been used in 
99 2.1 and 3.1 to construct quantal potential operators with time dependences (Heisen- 
berg picture) generated by classical dynamics. The purpose of this appendix is not 
to present the theory of the Weyl correspondence, which can be found elsewhere 
(Weyl 1927, Wigner 1932, Leaf 1968), but simply to identify symbols associated with 
it which appear in this paper. The formalism involves the two so-called ideal elements, 
IR, P))B = h-3A(R, P) and IR, P)), = A(R, P), the first associated with the space of 
observables (0) and the second with the space of statistical states (9). Here A is a 
self-adjoint operator with the phase-space (R, P) representations 

The ideal elements form the bases of a complete bi-orthonormal representation 
(Srinivas and Wolf 1975, Turner and Snider 1980). Thus, the unit operator on the 
space of observables has the resolution 

and 

&?, PIR’, P’)), = h-3 Tr A(R, P)’A(R’, P’) 
= s (R - R’)S (P - P’). 

A quantal operator A,, and its phase-space representative A(R,  P) are connected 
through the relations 

The quantal Liouville superoperator associated with a Hamiltonian operator H = 
K + V is the generator of operator motion (Heisenberg picture) defined by 

A,,(t) = exp[(i/h)Ht]A,, exp[-(i/h)Ht] = exp(i=.Yt)A.,. (A61 
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This superoperator can be written as the commutator 2 = h-'[H, I-. Its phase-space 
representation is 

s=((R, P I m ' ,  

= h - 3  Tr h(R, P) -YA(R' ,  P ' )  

= -i - P 2i 
VRS (R  -R')S (P  - P ' )  + - S(R - R ' )  

/1 h 

x [sin + ~ v R  * ~ p )  V ( R ) S ( P  - P ' ) ] .  ('47) 

The first term of this expression, due to Yt = h-'[K, I-, is independent of h. It is the 
generator of rectilinear, unaccelerated motion in quantum and classical mechanics 
alike. The second term, due to 7'" = h-'[ V, I-, depends explicitly on the value of 
Planck's constant and so distinguishes between classical and quantal dynamics. In the 
small-h limit of classical motion (cM), (A7) becomes 

AR, q9IR', P'))e 

P - -i- * VRS(R -R ' )S (P  - P')  + iVRV(R) V,S(R -R ' )S (P  -P') 
h-0  p, 

= y((R, PILtCMIR', " e  (A81 

and so it follows that the classical limit of 9 is the multiple i [ H , ] p B  of the Poisson 
bracket. 
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